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Carbon dioxide must be removed from the atmosphere to limit climate change to 2°C or less. The integrated assessment models used to develop 
climate policy acknowledge the need to implement net negative carbon emission strategies, including bioenergy with carbon capture and storage 
(BECCS), to meet global climate imperatives. The implications of BECCS for the food, water, energy, biodiversity, and social systems (FWEBS) 
nexus at regional scales, however, remain unclear. Here, we present an interdisciplinary research framework to examine the trade-offs as well as 
the opportunities among BECCS scenarios and FWEBS on regional scales using the Upper Missouri River Basin (UMRB) as a case study. We 
describe the physical, biological, and social attributes of the UMRB, and we use grassland bird populations as an example of how biodiversity 
is influenced by energy transitions, including BECCS. We then outline a “conservation” BECCS strategy that incorporates societal values and 
emphasizes biodiversity conservation.
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Atmospheric concentrations of carbon dioxide (CO2)   
 and other greenhouse gases (GHGs) continue to 

increase as a result of land-use change, fossil energy pro-
duction, and other anthropogenic activities (Le Quéré 
et  al. 2013). To ameliorate the impact of GHGs on cli-
mate, international negotiations led by the United Nations 
Framework Convention on Climate Change (UNFCCC) tar-
get a 2°C maximum increase in global average temperature 
(Meinshausen et al. 2009), assumed to be a “safe” threshold 
for climate change. The Paris Agreement, signed on 22 April 
2016 by 195 countries, takes this effort a step further by pur-
suing efforts to limit warming to 1.5°C (Hulme 2016, Rogelj 
et al. 2016). Such targets guide policy scenarios for fossil-fuel 
management via integrated assessment models (IAMs) to 
achieve climate stabilization (Moss et al. 2010).

Integrated assessment models emphasize interactions 
among global economic, energy, land-use, and technology 
systems (Jones et  al. 2013, Collins et  al. 2015) and play a 
major role in climate-change-mitigation policy, with large 
implications for Earth-system management (Schellnhuber 
1999, Barros 2014, Stocker 2014). Since the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change 
(IPCC AR5; IPCC 2014), the development of global GHG 
reduction scenarios via IAMs has shifted to emphasize net 
negative CO2 emission—that is, net carbon sequestration. 
This is because GHG emissions will now peak later than 
previously hoped and atmospheric GHG concentrations will 
decline less steeply than necessary to avoid climate warming 
of 2°C or less (Rockström et al. 2017).

Negative CO2 emission pathways rely on emerging tech-
nologies, including bioenergy with carbon capture and stor-
age (BECCS; Kriegler et al. 2013, van Vuuren et al. 2013), 
in which biomass is used to generate energy and CO2 is 
removed from the atmosphere through geologic sequestra-
tion or by enhancing natural carbon (C) storage (Fuss et al. 
2013, Smith et  al. 2015). The proposed BECCS economy 
is important to modeling efforts in the latest IPCC AR5 
(Tavoni et al. 2014) and continues to play a large role in the 
shared socioeconomic pathways (SSPs) of the forthcoming 
Sixth IPCC Assessment Report (Lotze-Campen et  al. 2013, 
Riahi et al. 2017). To meet the goals of the Paris Agreement, 
global anthropogenic CO2 emissions need to be reduced 
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by approximately half every decade, and atmospheric CO2 
removal needs to approach 5 metric gigatons per year with 
no net land-use emissions—including those due to land-use 
change—by 2050 (Rockström et al. 2017), underscoring the 
importance of adopting CO2 removal techniques such as 
BECCS globally.

Although BECCS may make sense in global climate sce-
narios, the implications of BECCS for food security, clean 
energy, water resources, biodiversity, social systems, and 
other attributes of value to society at regional scales are less 
clear (Rhodes and Keith 2008, Bonsch et al. 2014, Tian et al. 
2016). Despite the importance of BECCS in the UNFCCC 
process, environmental and socioeconomic trade-offs for 
large-scale deployment of BECCS are poorly considered in 
regional studies and are of growing concern, calling into 

question the overall validity of IAMs as they guide policy 
(Fuss et al. 2014, Smith et al. 2015, Zilberman 2015).

Here, we describe an interdisciplinary framework for 
analyzing the trade-offs and opportunities among emerging 
BECCS strategies and the regional food, water, energy, bio-
diversity, and social systems (FWEBS) that they affect across 
a diverse and changing region of North America, the Upper 
Missouri River Basin (UMRB; figure 1). We first describe 
the FWEBS research framework (figure 2) and characterize 
the UMRB as a case study for regional BECCS implementa-
tion; we then discuss how scenario development can help us 
understand its interaction with the FWEBS nexus (figure 3). 
The discussion is guided by our goal to understand whether 
negative CO2 emissions can be reached in the UMRB, under 
what land-use configurations, and at what cost or benefit to 

Figure 1. The Upper Missouri River Basin (UMRB) is defined as the region upriver from the confluence of the Big Sioux 
and Missouri Rivers in Sioux City, Iowa (excluding the Niobrara watershed), with major land-use classifications and 
administrative (state and reservation) boundaries.
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local communities and ecosystem (as well as Earth-system) 
services.

The food, water, energy, biodiversity, and social-
systems research framework
The implementation of a BECCS-based economy will affect 
multiple ecosystem and societal services, including water 
quality and supply (Popp et al. 2014, Albanito et al. 2015), 
human nutrition (Tilman and Clark 2014), technology 
(Baum 2014), regional economics (Muratori et  al. 2016), 
biodiversity (Powell and Lenton 2013), and cultural eco-
system services (Galaz 2012, Scholes 2016). The processes 
influenced by regional BECCS strategies must be studied 
in concert; we need to take into account how to provide for 
society’s growing demand for food, water, and energy while 
maintaining biodiversity, ecosystem services, and economic 
and social systems, including cultural values and identity, 
social networks, and livelihoods. The interconnectedness of 
these systems that support human well-being and lifestyles 
is increasingly evident and has led researchers to approach 
these systems as a nexus—the water–energy–food (WEF) 
nexus—for identifying cross-sector efficiencies (Scanlon 
et  al. 2017) and to develop solutions to pressing resource 
challenges without unintended consequences (Scott et  al. 
2015). Each system within the WEF nexus can be viewed 
as a socioecological system comprising biophysical com-
ponents and human components that are characterized by 
dynamic feedback loops. BECCS approaches that emphasize 
terrestrial C storage may prove technically feasible, but in 
the context of the WEF nexus, their implications for regional 
economies may make such approaches socially impractical. 
Scholars, practitioners, and policymakers have promoted the 
WEF nexus as a conceptual tool for approaching sustain-
ability, including the United Nation’s sustainable develop-
ment goals (SDGs), and protecting against potential risks of 
future water, energy, and food insecurity (Biggs et al. 2015). 
However, research frameworks for nexus thinking often fail 
to incorporate biodiversity and other ecosystem services, as 
well as social dimensions such as livelihoods (Biggs et  al. 
2015).

In order to address this shortcoming regarding the WEF 
nexus, we propose a research framework that explicity con-
siders biodiversity and social systems as part of the WEF 
nexus in what we present here as the FWEBS nexus (figures 2 
and 3). It is expected that a FWEBS research framework 
that explicitly accounts for biodiversity and social systems 
will allow us to more comprehensively examine trade-offs 
and opportunities with various climate change and climate 
mitigation scenarios including BECCS. We anticipate that 
others can adapt the FWEBS framework for application 
and testing in other regions, including low-, middle-, and 
high-income countries. In addition, it is expected that the 
FWEBS framework can be widely applied by practitioners, 
scientists, and policymakers to develop and monitor policy 
and management plans in regional- and global-climate and 
sustainable-development agendas.

Figure 2. Conceptual diagrams following Foley and 
colleagues (2005) for business-as-usual scenarios, 
“aggressive” bioenergy with carbon capture and storage 
(BECCS) scenarios, and “conservation” BECCS scenarios 
that integrate sustainable management of the food, water, 
energy, biodiversity, and social systems (FWEBS) nexus.
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The Upper Missouri River Basin
For the purposes of this study, we consider the Upper 
Missouri River Basin to be upriver of confluence of the 
Missouri and Big Sioux Rivers in Sioux City, Iowa, exclud-
ing the Niobrara watershed. By any definition, the UMRB 
extends from the Crown-of-the-Continent headwaters in 
Montana and the Front Range of Wyoming to the Prairie 
Pothole region of North and South Dakota (figure 1). The 
UMRB as we define it is dominated by the states of Montana, 
North Dakota, South Dakota, and Wyoming (and small 
parts of Canada, Iowa, Minnesota, and Nebraska). It repre-
sents some 30% of wheat production in the United States, 
13% of soybean production, 11% of cattle production, and 
9% of corn production, the last concentrated in the eastern 
Dakotas. Most of the region is rural, and only Alaska has a 
lower population density among US states than Wyoming, 
Montana, North Dakota, and South Dakota. The largest city 
in the UMRB, Sioux Falls in South Dakota, has a population 
of approximately 175,000. The UMRB encompasses diverse 
land uses and land-use trajectories, climate attributes, and 
social and cultural geographies, as well as carbon capture 
and storage (CCS) potential, all of which must be considered 
when understanding the consequences and opportunities of 
BECCS.

Land management. Over the past decade, land-use practices 
in the agricultural and industrial sectors of the UMRB 

have responded to policy drivers, mar-
kets (especially the amenities market), 
commodity price cycles, climate vari-
ability, and energy production, among 
other factors. Regional elasticity to mar-
ket pressures appears to be high, as has 
been illustrated by recent conversion 
rates between grassland and cropland 
(figures 4 and 5; Wright and Wimberly 
2013). Agricultural land in the region has 
been exiting the Conservation Reserve 
Program (CRP) at increasing rates 
(figure 5), with over 50% (17,000 square 
kilometers) of enrolled land exiting the 
program since 2007 because of declin-
ing federal enrollment caps, expiring 
CRP acreage, and economic incentives 
to plant, largely to corn and soybean 
(Morefield et al. 2016). Such conversions 
from extensive to intensive land uses are 
associated with negative consequences 
for soil C sequestration and biodiversity 
(Claassen 2011). Expansion of oil and 
gas production since the mid-2000s has 
also created new hybrid landscapes in 
which agricultural- and energy-produc-
tion demands for water and land inter-
sect in complex ways.

Land management across the UMRB 
changes distinctly from west to east, and more than 20 
Native American tribes manage tens of thousands of square 
kilometers within the UMRB (figure 1). The capacity of 
tribes to influence regional land- and water-use patterns is 
gaining momentum, as has been demonstrated, for example, 
by the active restoration of native species on tribal lands and 
worldwide sympathy for the Water Protectors movement 
(e.g., Elbein 2017). Together, these trends add complexity 
to the social dimensions of land management (Hendrickson 
et al. 2016) and their influence on the FWEBS nexus in a 
rapidly changing region with ongoing fossil-fuel extraction 
(Jackson et al. 2014) and associated CCS potential.

Climate. High decadal climate variability and warming tem-
perature trends, especially during winter (figure 6), are 
superimposed on this matrix of changing land cover (Mehta 
et al. 2013), raising concerns about the resiliency of existing 
socioeconomic systems and food security faced with unprec-
edented climate change (Seifert and Lobell 2015, Cook et al. 
2015). Interestingly, climatological summer (June, July, and 
August) temperatures may have cooled across parts of the 
UMRB from the 1970s until 2015 (figure 6), similar to the 
adjacent Canadian Prairie Provinces, for reasons thought to 
be due in part to changes in land management, including the 
reduction of summer fallow and the widespread adoption 
of no-till agriculture (Gameda et al. 2007, Vick et al. 2016), 
although 2017 brought an acute summer drought to much of 

Figure 3. The interaction among climate change and bioenergy with carbon 
capture and storage (BECCS) scenarios, with key attributes of the food, water, 
energy, biodiversity, and social systems (FWEBS) nexus, including the domain 
in which coupled interactions in the Upper Missouri River Basin will be 
modeled.
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the UMRB. General circulation models (GCMs) agree that 
annual average temperatures in the UMRB will continue to 
increase, using the bias-corrected ensemble Representative 
Concentration Pathway (RCP) 8.5 predictions as an upper 
limit to expected future temperature changes in figure 7, 
but it remains unclear how future changes in land manage-
ment, including BECCS strategies, will affect water, energy, 
and GHG balances and thereby global and regional climate 
(Hallgren et al. 2013, DeLucia 2015).

Carbon capture and storage. Carbon capture and storage efforts 
can be internal or external to any region for global BECCS to 
take place (e.g., Muratori et al. 2016). The UMRB and sur-
rounding regions have extensive carbon storage potential in 
geologic formations (Litynski et al. 2009), and a number of 
CCS test sites have been established by the Big Sky Carbon 
Sequestration Partnership in carbonate formations (e.g., 
Kevin Dome, Montana), in deep basalts in Washington State, 
in depleted oil reservoirs or for enhanced oil recovery, and 
with respect to enhanced coal-bed methane in the Powder 
River Basin of Montana and Wyoming within the UMRB, 
where it was found that additional incentives were required 

to make CCS economical. Initial storage resource estimations 
indicate large storage potential, but implementation of the 
Environmental Protection Agency’s Underground Injection 
Control (UIC) Class VI regulations for CO2 injection defines 
underground drinking water sources by salinity only, not 
allowing exemptions available under other UIC well classes. 
This rule will reduce the geologic carbon storage potential 
in the UMRB owing to fresh water recharge of formations 
at basin edges. The UMRB also has the potential to store C 
in agricultural soils given the widespread adoption of no-till 
agriculture (West and Post 2002, Watts et al. 2011) and the 
ongoing decline of the practice of summer fallow, which rep-
resents a source of CO2 to the atmosphere (Merrill et al. 1999, 
Vick et al. 2016). In other words, select CCS efforts are pos-
sible within the UMRB and interact with the FWEBS nexus.

Food, water, energy, biodiversity, and social systems 
in the Upper Missouri River Basin
We discuss the FWEBS nexus as it applies to the UMRB 
sequentially, noting of course the interactions among food, 
water, energy, biodiversity, and social systems that we high-
light in part in supplemental appendix S1.

Figure 4. Recent trends in land cover (2001–2011) and the percentage of total land-cover area (2011) in the Upper 
Missouri River Basin. The cover classes of similar type were aggregated to a common class (e.g., four urban classes 
were collapsed into a single class). The “other” cover class includes water, wetlands, and barren and are subject to the 
interannual variability of the exposed shoreline of reservoirs, as well as misclassification errors given the ephemerality of 
wetlands and/or irrigation practices. The data were obtained from the National Land Cover Database (Homer et al. 2007, 
Fry et al. 2012, Homer et al. 2015).
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Food. BECCS presents unique opportunities and trade-offs 
with the FWEBS nexus in the UMRB (figure 2). Agriculture 
in the western UMRB is concentrated on the production 
of feed crops and animal products, with limited inroads by 
bioenergy production at the present, mainly due to the high 
value placed on food and, to some degree, climatic condi-
tions. Bioenergy production is currently more prominent 
in the eastern UMRB and is largely derived from standard 
agricultural row crops, such as corn-grain ethanol. Common 
crops in the western UMRB include winter and spring 
wheat, with a growing influence of “pulse” legumes, such 
as lentils and peas (Burgess et al. 2012). Corn and soybeans 
dominate the eastern UMRB and continue to increase in 
area (figure 4). Large swaths of the UMRB remain in native 
grasslands used for range-cattle production (Gascoigne et al. 
2013).

More diverse cropping systems, including pulse crops, are 
improving regional soil quality in the western UMRB (Miller 
et al. 2015), especially versus alternative management prac-
tices such as summer fallow, which is still common in parts 
of Montana but detrimental to soil C (Merrill et  al. 1999, 
Vick et al. 2016). If managed appropriately, fallow replace-
ment with pulses can grant economic benefits to producers, 
resulting in a win–win from both economic and climate 
perspectives (Bagley et al. 2015, Miller et al. 2015). Increases 
in the areal extent of pulse crops and oilseed bioenergy 
production have followed incentives from the US Farm Bill, 
but it remains to be seen whether enhanced bioenergy and 
pulse cropping is economically viable in a variable climate 
(Cutforth et  al. 2007) and whether biofertilizers, such as 

N-fixing cyanobacteria, could improve 
nutrient management (Bhat et al. 2015). 
The consequences of BECCS strategies 
for regional biogeochemical cycles, par-
ticularly those of carbon and nitrogen, 
have not been studied to date.

Water. Water resource management faces 
multiple challenges across the UMRB, 
including intersectoral competition 
between energy production, agriculture, 
biodiversity, and utilities as well as inter-
jurisdictional competition among states 
and between states and sovereign Native 
American nations. The consequences 
of water competition are exacerbated 
by institutional failures, such as overal-
location of ground- and surface-water 
resources and major difficulties in adju-
dicating interjurisdictional and Tribal 
water rights. The response of water-use 
issues to a BECCS economy given cur-
rent conflicts and with a changing cli-
mate requires additional research (Smith 
et al. 2015).

Trends in water quality emphasize the 
scalar mismatch between land-use dynamics and existing 
governance frameworks (Allred et  al. 2015). For example, 
the onset of new land and water uses associated with the 
rapid expansion of hydraulic fracturing activities in the 
region revealed the limits of existing regulatory frameworks 
and the limited capacity of state and local governments for 
oversight, monitoring, and enforcement. Environmental 
monitoring provides insight about aggregate land-use effects 
such as the management of resource extraction and energy 
production waste (Bauder et al. 1993, Stackpoole et al. 2014) 
and would need to be expanded to account for additional 
impacts of BECCS strategies on agricultural and industrial 
practices, as well as biodiversity and other FWEBS attributes.

Energy. The energy industry of the UMRB is dominated by 
conventional systems, namely fossil fuels and large-scale 
hydropower, despite substantial solar and wind resources 
(Elliot et  al. 1992, Lopez et  al. 2012). For example, the 
Colstrip power plant in eastern Montana is the second-
largest coal-fired generating facility west of the Mississippi 
River and produces approximately 45% of Montana’s total 
CO2 emissions. The energy industry is changing rapidly 
(e.g., two units of the Colstrip plant are slated for decommis-
sioning), providing new opportunities such as retrofitting 
power generators to use alternative fuels or spare transmis-
sion capacity for development of new generation facilities 
(Cao and Caldeira 2010).

The dramatic expansion of oil and gas extraction in the 
UMRB includes the mid-2000s coal-bed methane boom in 
the Powder River Basin and the 2004–2014 Bakken shale-oil 
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Figure 5. Trends in conservation reserve program (CRP) areal extent in the four 
states that constitute the greatest area of the Upper Missouri River Basin, as we 
defined in figure 1.
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boom. These activities have resulted in an approximately 
700% increase in regional crude-oil production between 
2000 and 2017 and nearly a 400% increase in natural-gas 
production, along with new pressures on already limited 
water resources (Jackson et  al. 2014). Energy production 
could potentially be coupled with geological CCS (Eccles 
et al. 2012) or the removal of atmospheric CO2 by ecosys-
tems (Zhu et al. 2014), with both approaches demonstrating 
high potential in the UMRB (West and Post 2002, Litynski 
et al. 2009).

The feasibility of CCS, via public and political acceptance 
of such technology and its risks, is not clearly quantified. 
Using natural ecosystems to store carbon may also be prob-
lematic because of climatic constraints within the UMRB 
that limit net primary production. Potential reductions in 
carbon storage in carbon-rich grasslands converted to crops 
or woody vegetation must be taken into consideration when 
accounting for net atmospheric CO2 removal (Jackson et al. 
2002, Gelfand et al. 2011). The existing matrix of coal- and 
natural-gas-based energy production and carbon sequestra-
tion from geologic and natural ecosystems in the UMRB 
provides a rich opportunity for interdisciplinary research 
(Humpenöder et al. 2014).

Bioenergy expansion in the western UMRB would require 
substantial economic incentives because of strong and 
sustained markets for high-quality food production, par-
ticularly cereals and beef. Bioenergy production may also 
become more financially competitive under projected cli-
mate change or with advancements in new bioenergy 

(including biofuel) crop cultivars (Berdahl et al. 2005, Gesch 
et al. 2015). The expanded adoption of bioenergy ultimately 
rests on economic viability but also intersects with cultural 
values, including biodiversity protection, that likewise influ-
ence decision-making.

Biodiversity. It is estimated that 70% of the grasslands in the 
Great Plains have been converted to other land uses. Those 
that remain are crucial reservoirs of biodiversity (Samson 
et  al. 2004). The UMRB has attracted public and private 
ecological restoration efforts at local to landscape scales, but 
recent reductions of Conservation Reserve Program (CRP) 
lands (figure 5), native grasslands, and wetlands (Johnston 
2013, Wright and Wimberly 2013) are key examples of how 
quickly land management can respond to economic drivers 
and associated changes in policy. Intensively managed agri-
cultural landscapes can provide habitat, but conversion of 
CRP, native grasslands, and wetlands to agriculture—espe-
cially row-crop production (Brown et  al. 2005)—can have 
strong negative impacts on biodiversity (Best et  al. 1995, 
Lehtinen et al. 1999). These impacts extend beyond direct 
habitat loss (see supplemental appendix S1); for example, 
water quality and contaminant exposure pose a range of seri-
ous risks to amphibians, from direct mortality (Relyea 2005) 
to endocrine disruption (Hayes et al. 2002), emphasizing the 
need to study connections within the FWEBS nexus.

Social systems. It is expected that BECCS expansion in the 
UMRB will influence social systems via impacts on farm 

Figure 6. Decadal trends in summer (JJA) and winter (DJF) temperature from 1970 until 2015 in the region, including 
and surrounding the Upper Missouri River Basin (figure 1) from the Climatic Research Unit (CRU) database (Harris et al. 
2013).
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Figure 7. Future climate under full Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) 
8.5 ensemble bias corrected using CRU and downscaled to 0.5 degrees resolution, following Poulter and colleagues (2010).
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economics and overall livelihoods, competition for land and 
labor, working conditions and renumeration for workers, 
governmental policies, cultural ecosystem services, and food 
security. Some social systems, such as regional econom-
ics, are readily quantifiable and can be directly compared. 
Other social systems, such as values and traditions, are often 
less meaningful when expressed in monetary terms (Daily 
et al. 2009), but they have important social value (Bagstad 
et al. 2015) and play an important role in decision-making 
(Wainger et  al. 2010). For example, Native American and 
rural communities in Montana rely on hunting and harvest-
ing of wild edible plants for cultural identity, food sover-
eignty, family ties to previous generation, and health benefits 
(Byker Shanks et al. 2015). Considering diverse stakeholder 
perspectives, attitudes, and decisions in response to the 
potential expansion of BECCS in the UMRB will allow us to 
elucidate barriers and opportunities for BECCS implemen-
tation. For example, meat production, including rangeland 
and cropland for growing animal feed, is the largest land use 
in the eastern UMRB, and much of this land could be used 
for bioenergy production (Langholtz et al. 2016), but there 
are strongly held values toward animal agriculture and meat 
consumption that make such land-use changes more dif-
ficult (Foley et al. 2011, Turner et al. 2014, Langholtz et al. 
2016). Previous research suggests that bioenergy expan-
sion can compete for land and labor resources and result 
in increased food prices that ultimately lead to higher food 
insecurity, particularly for low-income and landless popula-
tions as affordable food becomes less accessible (Müller et al. 
2008, Ewing and Msangi 2009). On the other hand, higher 
food prices can stimulate the agricultural sector and cre-
ate new opportunities for rural communities (Müller et al. 
2008), including increased purchasing power and enhanced 
resilience to market instability (Ewing and Msangi 2009).

In summary, all elements of the FWEBS nexus interact 
with BECCS strategies in the UMRB and elsewhere, and 
understanding the complex trade-offs, as well as opportuni-
ties, of multiple BECCS approaches across different spatial 
and temporal scales requires careful attention to each attri-
bute as well as their interactions.

Developing regional bioenergy with carbon capture 
and storage scenarios for assessing ecological  
and socioeconomic interactions
To examine the critical trade-offs and opportunities of alter-
native BECCS strategies within the FWEBS nexus at regional 
scales such as the UMRB, researchers must define a set of 
plausible scenarios for achieving negative CO2 emissions. 
The definition of scenarios has itself become a complex 
area of study, with varying definitions of what constitutes 
a scenario across different disciplines and applications (van 
Vuuren et  al. 2012). The general strategy for developing 
scenarios for global-change assessment typically involves 
using qualitative descriptions, such as narratives or sto-
rylines, that characterize a broad array of possible futures 
and then developing increasingly quantitative assumptions 

consistent with the broad narratives to inform specific mod-
eling exercises (Moss et  al. 2010, Rounsevell and Metzger 
2010). Increasingly, interdisciplinary processes are being 
used to develop scenarios with more robust qualitative and 
quantitative assumptions and better recognition of feedback 
processes in human and ecological systems, such as the latest 
SSPs for assessing climate mitigation and adaptation (O’Neill 
et al. 2017). Despite substantial efforts in scenario develop-
ment, “downscaling” broad narratives to regional scales 
remains a challenge, because broad narratives do not easily 
align with local contexts (Kriegler et al. 2012).

Rather than propose specific quantitative scenarios here, 
we discuss general narratives for developing scenarios that 
can inform a regional analysis of BECCS impacts on FWEBS 
in the UMRB. Achieving net negative CO2 emissions in 
the UMRB could conceivably be achieved by implement-
ing a wide range of mitigation and adaptation measures, 
although as we have noted, these may conflict with other 
management goals (figure 2). We propose, as a starting 
point, two general narratives that capture the extremes of a 
continuum of BECCS-related strategies. At one extreme, an 
aggressive BECCS approach would emphasize technological 
and land-intensive approaches, including geological CCS, 
producing bioenergy crops for electricity and fuel (to dis-
place fossil sources) and increasing electricity production 
from renewable sources as part of a broader energy transi-
tion (figure 2). At the other extreme, a conservation BECCS 
approach would emphasize more land-extensive approaches, 
including biological and geological carbon sequestration 
through soil-management practices and CCS (Chabbi et al. 
2017), afforestation and avoided land conversion, and the 
production of perennial cellulosic bioenergy crops. Whereas 
the conservation BECCS approach may miss some oppor-
tunities to sequester C, such a strategy may align BECCS 
with other ecosystem services and cultural values, including 
biodiversity conservation. These general narratives provide 
a framework for assessing FWEBS trade-offs and opportu-
nities along a continuum of quantitative scenarios between 
aggressive and conservation, all of which can be compared 
to business-as-usual or status-quo alternatives. The general 
narratives also fit within, and must ultimately be consistent 
with, existing broader global-change storylines, such as the 
latest RCP and SSP storylines (O’Neill et al. 2017).

Crucial to refining quantitative BECCS scenarios for ana-
lyzing potential future conditions in the UMRB is an appre-
ciation for local context—local socioeconomic conditions, 
technologies, and institutions—which ultimately determines 
the feasibility and impacts of alternative BECCS strategies. 
Incorporating such local context will ultimately require an 
iterative process, including interdisciplinary scientists and 
local stakeholder experts, whereby scenario assumptions 
are tested and refined both through modeling exercises and 
stakeholder feedback (Sleeter et al. 2012). The interactions 
between local attributes of the FWEBS nexus and human 
response will determine the extent to which aggressive, 
conservation, or other BECCS strategies are technically 
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feasible, socially acceptable, and economically sustainable. 
By working with local experts and stakeholders in an itera-
tive process, researchers can define a limited set of alterna-
tive quantitative scenarios that can achieve net negative 
CO2 emissions (if technically possible) and, given those sce-
narios, determine the key FWEBS trade-offs needed to guide 
regional-scale policymaking. Such an effort must also point 
to synergistic interactions that may provide opportunities 
to improve multiple factors in the FWEBS nexus (figure 2).

How will different elements of the FWEBS nexus change 
as BECCS development becomes more prominent, and, as 
has been demonstrated by the case study of biodiversity 
(appendix S1), could “conservation” BECCS scenarios be 
developed that satisfy multiple societal objectives (figure 2)? 
Alternatively, are aggressive BECCS strategies necessary to 
mitigate climate warming such that hard compromises will 
have to be made regarding FWEBS and other ecosystem and 
Earth-system services (Boysen et al. 2017, Rockström et al. 
2017)? We hypothesize that business-as-usual strategies 
provide insufficient atmospheric C removal and aggressive 
BECCS strategies may present too many conflicts with the 
FWEBS nexus to become adopted. Thus, a conservation 
BECCS strategy that relies on a balanced array of BECCS 
activities (from geological and biological CSS to cellulosic 
ethanol and non-BECCS renewable energy) designed to 
minimize socioeconomic trade-offs while simultaneously 
benefitting biodiversity conservation may be the only real-
istic approach to serve multiple societal objectives in the 
UMRB and likely other global regions. Testing such a 
hypothesis requires a highly multidisciplinary approach that 
combines surveys and interviews of perceptions to BECCS 
and data-informed models of economic, biogeochemical, 
hydrological, biodiversity, and climate systems that capture 
the feedback loops and interrelationships between system 
drivers and outcomes (figure 3). New regulatory and incen-
tivization approaches to guide multiple actors, including 
industry, governments, and individuals, toward behaviors 
that help us become positive actors in the climate system are 
ultimately needed. To do so, we must design BECCS strate-
gies and contrast them against alternate strategies to find the 
correct balance among atmospheric C removal, likelihood of 
adoption, and ecological and socioeconomic sustainability.
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Appendix A: Bird populations as a case study of BECCS interactions 1 

Bird populations within the UMRB present an ideal case study for understanding how changes in coupled 2 

food, energy, and water systems impact biodiversity and interact with societal values. Grasslands 3 

comprise a significant portion of the land cover in the UMRB (Figures 1 & 4) and grassland birds have 4 

undergone the greatest recent population declines of any avian habitat guild in North America (Sauer et 5 

al. 2013; Schipper et al. 2016). These declines are largely attributed to habitat loss and degradation 6 

(Samson and Knopf 1994; Hill et al. 2014), although other factors such as insecticide toxicity (Mineau 7 

and Whiteside 2013) and climate change (Gorzo et al. 2016) play important roles. Conversion of 8 

grasslands to cropland in the western Corn Belt of North America, including the eastern portions of the 9 

UMRB study area, has accelerated recently with high prices for corn and soybeans associated with the 10 

expanding biofuels industry (Wright and Wimberly 2013). Land-use change and river flow regulation in 11 

the UMRB associated with energy development (wind, biofuels, and hydropower) has affected regional 12 

biodiversity, including impacts on bird populations associated with grassland, wetland and riparian 13 

systems (Dixon et al. 2012; Fargione et al. 2012; Hill et al. 2014; Sohl 2014; Munes et al. 2015; Rashford 14 

et al. 2015). The impacts of geologic CCS on bird populations is less clear. Continued land use change in 15 

response to food, energy, and water pressures is likely to further affect bird populations and productivity, 16 

but these impacts are poorly known. Expansion of BECCS in the UMRB has the potential to greatly 17 

impact abundance and diversity for birds of grassland and other habitat types within the region. 18 

Particularly important to grassland birds are bioenergy crops and wind energy under BECCS scenarios, 19 

which would likely put more grasslands (including restored prairie, CRP grasslands, and dedicated 20 

bioenergy crops) on the landscape (Figure 2). 21 

Other impacts of land cover change on bird biodiversity are indirectly related to human pressures. 22 

For example, native prairie provides high quality nesting habitat for grassland birds, but the extensive 23 

grasslands of the UMRB have been greatly fragmented and degraded (e.g., by invasive non-native plant 24 

species and encroachment of woody vegetation), with subsequent impacts on bird populations (Samson 25 

and Knopf 1994). Encroachment of woody vegetation into grasslands has negative effects on occurrence, 26 



 

2 

abundance and nesting success of grassland birds in the UMRB (Samson and Knopf 1994; Grant et al. 27 

2004; Greer et al. 2016), and often has a negative impact on soil C stocks (Jackson et al. 2002). Similarly, 28 

exotic grasses and other invasive plants in grasslands also tend to negatively impact bird populations 29 

across the Northern Prairie region of North America (Bakker and Higgins 2009; Greer et al. 2016). In 30 

addition, a number of grassland bird species are area-sensitive, showing negative population responses as 31 

grassland patch size decreases (Davis 2004). This area sensitivity is not always consistent among species 32 

or studies (Walk et al. 2010; Greer et al. 2016), and such factors as edge-to-interior ratio, vegetation 33 

characteristics, and landscape-scale habitat characteristics may modify area sensitivity for grassland birds 34 

in the UMRB (Bakker et al. 2002; Davis 2004; Ribic et al. 2009). At the local patch scale, bare ground, 35 

vegetation height, and litter depth are consistent predictors of habitat occupancy by grassland birds (and 36 

are also relevant for the regional C cycle and hydrology), although relationships with these variables and 37 

occupancy, abundance or nesting success may differ among different grassland bird species (Fisher and 38 

Davis 2010). 39 

CRP grasslands generally provide favorable habitat for grassland birds, although vegetation 40 

structure (e.g., high grass coverage vs. low grass coverage vs. bare patches) and plant species 41 

composition, year-to-year variation in precipitation, and landowner management (e.g., haying), in 42 

addition to landscape-level characteristics, influence suitability for various grassland bird species in the 43 

UMRB (Johnson and Schwartz 1993). It should also be noted that CRP grasslands do not replace native 44 

prairie with regard to either the vegetative or the bird communities; this is especially relevant to species of 45 

conservation concern, such as Sprague’s pipit (Anthus spragueii) and Baird’s sparrow (Ammodramus 46 

bairdii; Johnson and Schwartz 1993). 47 

Switchgrass (Panicum virgatum) or other bioenergy grasslands as cellulosic biofuel crops could 48 

also serve as potential suitable breeding habitat for grassland birds (Murray et al. 2003; Robertson et al. 49 

2012b; Blank et al. 2014, 2015), although appropriate timing of harvest (i.e., after the breeding season is 50 

complete) is critical to grassland bird productivity in these habitats. Abundances of many grassland birds 51 

are higher in switchgrass fields than in row crops, but bird species showing positive relationships with 52 
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taller grassland vegetation are those for which switchgrass is likely to be suitable habitat (Murray and 53 

Best 2003; Roth et al. 2005). Late-summer harvest, however, can make switchgrass fields more suitable 54 

for species favoring short-grass habitats, such as grasshopper sparrow (Ammodramus savannarum) and 55 

horned lark (Eremophila alpestris) (Murray and Best 2003; Roth et al. 2005). Nevertheless, breeding bird 56 

biodiversity in switchgrass is also not likely to reach levels supported by native prairies, which have more 57 

varied vegetation and structural diversity, so conversion of native prairie to switchgrass or other 58 

bioenergy grasslands is likely to negatively impact grassland birds as a whole (Robertson et al. 2012b; 59 

Blank et al. 2014). In addition to breeding-season benefits to grassland birds, switchgrass fields are also 60 

used as en route migration stopover habitat for migrating grassland birds (Robertson et al. 2012a), and 61 

abundance and species richness for migrant grassland birds in switchgrass fields did not differ 62 

significantly from those in grasslands with a composition of mixed grasses and forbs. 63 

BECCS scenarios are likely to be coupled to development of renewable energy sources such as 64 

wind, solar radiation, and hydropower (Figure 2). Wind energy development is likely to increase in the 65 

future in the UMRB due to high and consistent winds (Fargione et al. 2012). Such development of wind 66 

energy potential within the UMRB is likely to influence regional bird populations (Kuvlesky et al. 2007; 67 

Smith and Dwyer 2016), and several studies have examined effects of wind farms on the regional 68 

avifauna. Direct mortality of birds in the Northern Prairie region from collisions with turbines appears to 69 

be relatively low. For example, (Osborn et al. 2000; Johnson et al. 2003) estimated bird mortalities at the 70 

Buffalo Ridge Wind Resource Area (BRWRA) in southwestern Minnesota to range from 0.5-4.5 71 

mortalities per turbine per year, with the majority of birds killed belonging to the Passeriformes. Graff et 72 

al. (2016) studied wind farms in southern North Dakota and northern South Dakota and estimated 73 

mortalities during the spring and early summer to range from 0.8-2.6 mortalities per MW of energy 74 

produced, with waterfowl deaths constituting a majority of mortalities and a higher diversity of birds 75 

being killed at turbines located in grasslands than at agricultural sites. Perhaps more problematic to bird 76 

populations than direct mortalities are reduced abundances in habitats surrounding wind turbines (often 77 

up to 800 m), resulting in lower occupancy or lower bird abundances in wind farm areas (Drewitt and 78 
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Langston 2006; Stewart et al. 2007; Pearce-Higgins et al. 2009). Such reduced abundances in wind farm 79 

habitats, however, do not necessarily occur for all species (Douglas et al. 2011). Within the Northern 80 

Prairie region, Usgaard et al. (1997) found that raptor abundances within the BRWRA were similar to 81 

other habitats within the region, but that raptor nest sites avoided areas where turbines were present. 82 

Densities of grassland birds within CRP grasslands in the BRWRA were about 3-fold lower at 80 m than 83 

at 180 m from turbines. Niemuth et al. (2013) found that occupancy of wetland sites by water birds and 84 

shorebirds did not differ markedly between wind farm and non-wind farm sites in southern North Dakota 85 

and northern South Dakota, although occupancy was slightly but consistently lower for a few species at 86 

sites near turbines where agriculture was the dominant habitat on the landscape. Collectively, these data 87 

suggest that site location of wind farms within the UMRB is likely to influence their impact on birds. 88 

Placement of wind farms in agricultural or other disturbed habitats while avoiding undisturbed grassland 89 

areas is likely to provide maximum benefits to grassland bird biodiversity (Kiesecker et al. 2011; Graff et 90 

al. 2016). In this regard, Fargione et al. (2012) modeled bird habitat and bird abundances within the 91 

Northern Great Plains to identify sites within the UMRB with high wind potential but relatively low 92 

potential for impacting bird populations. 93 

Wetlands in the UMRB, particularly within the Prairie Pothole Region (PPR) of the Dakotas, are 94 

critical habitats for wetland-associated birds (Lehtinen et al. 1999; Naugle et al. 2001; Johnson et al. 95 

2005; Mushet et al. 2014; Steen et al. 2016). Land use change has markedly impacted wetland habitats 96 

and future climate and land use changes are projected to continue to negatively impact wetlands within 97 

the region and their functionality, including impacts on such ecosystem services as water quality, carbon 98 

sequestration and biodiversity (Whited et al. 2000; Johnson et al. 2010; Fennessy and Craft 2011; 99 

Rashford et al. 2015). Current pressures to alter wetlands for row-crop production within the PPR have 100 

resulted in recent average wetland loss rates of 0.28 - 0.35% per year (as well as across the UMRB, 101 

Figure 4), with greater losses in central and eastern regions and lesser losses in western and northern 102 

edges of the Dakotas (Johnston 2013). Coupled with loss of wetlands due to agricultural expansion in the 103 

PPR, agricultural acres with tile drainage have also recently expanded recently, and this trend is likely to 104 
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continue into the future. Expansion of tile drainage in agricultural areas alters wetland hydrology, reduces 105 

surface water storage, increases nutrient turnover rates, increases effective drainage areas and increases 106 

flows of surface water into stream and wetland systems (Blann et al. 2009). Thus, increasing tile drainage 107 

is likely to compound wetland losses due to agricultural practices, shifting available wetland area away 108 

from ephemeral and seasonal wetlands to semi-permanent and permanent wetlands and increasing 109 

agricultural contaminant levels (Blann et al. 2009). Moreover, fluctuation of water levels in wetlands 110 

within tilled agricultural lands may be 3-fold greater than in those in grasslands within the PPR, with 111 

lesser fluctuation in more permanent wetlands (Euliss and Mushet 1996), and the increased surface water 112 

flows in areas with tile drainage is likely to compound these fluctuations. Thus, land use changes within 113 

the PPR are likely to markedly impact the suitability of wetlands for wetland-associated birds. 114 

Habitat suitability models for wetland-associated birds suggest that unfragmented prairie-wetland 115 

complexes provide more and better habitat than isolated wetlands within row-crop agricultural habitats in 116 

the PPR (Naugle et al. 2001). Johnson et al. (2005) developed climate-change models for semi-permanent 117 

wetlands in the PPR, projecting regional reductions in the amount of productive wetland habitat for 118 

waterfowl and a shift of the most productive habitat to available wetlands in the eastern and northern 119 

regions of the PPR. Expanding climate-change models to include surface water, groundwater, and 120 

wetland vegetation dynamics suggested a substantial shrinkage and eastward shift of productive wetland 121 

habitat for waterfowl (Johnson et al. 2010). More recent bioclimatic models also project loss of suitable 122 

wetland habitat for wetland birds within the PPR (Steen et al. 2016). Rashford et al. (2015) modeled 123 

climate and land use change within the PPR and their models suggested that the combined pressures of 124 

current land use and climate change trends would reduce wetland productivity and suitable habitat for 125 

wetland-associated species.  126 

To project trends in biodiversity under future region-wide land use predictions, future studies 127 

using spatially explicit predictive models to link abundances and distributions of grassland and wetland 128 

bird species to changes in land cover and landscape configuration across the region are needed. Such 129 

studies should focus on spatially-explicit land cover change scenarios (Sohl et al. 2014) using recent 130 
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remotely-sensed land cover data, derived from sources such as classified Landsat imagery (e.g., USGS 131 

National Land Cover Database or LANDFIRE). These studies will provide much better region-wide 132 

projections for biodiversity responses to landscape change, including landscape change associated with 133 

alternative BECCS scenarios within the UMRB. Models developed for the UMRB may be suitable for 134 

application or extrapolation to other regions with similar agriculturally dominated landscapes and social 135 

systems. 136 

 137 
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